Quantitative Macro-Labor: Global Solution Techniques

Professor Griffy

UAlbany

Fall 2024

Announcements

 \blacktriangleright Today: value function iteration.

- \blacktriangleright Using:
	- 1. Grid search;
	- 2. Interpolation (grid search with functions filling in between nodes).
- \triangleright Go through examples with MP94 model (code on cluster).
- \blacktriangleright Empirical regularities project due 11/5!

Solving a Model

 \triangleright When we say "solve a model" what do we mean?

- 1. Find the equilibrium of the model.
- 2. Generally, determine the policy functions.
- 3. Determine the transition equations given the individual and aggregate state.
- 4. i.e., aggregate up the policy functions and determine prices given distributions.
- \triangleright Generically, this is hard: many states, non-linear decision rules, etc.

Solving a Model

- \triangleright Generically, this is hard: many states, non-linear decision rules, etc.
- \blacktriangleright Much of quantitative macro is about finding "shortcuts" without sacrificing accuracy of solution (some we have seen):
	- 1. Planner's problem: use welfare theorems to remove prices from problem.
	- 2. Rational expectations & complete markets: Aggregate worker decision rules by assuming they make same predictions about future prices, and face same consumption risk.
	- 3. Exogenous wage distribution/prices: agents do not respond to decisions of other agents.
	- 4. Block Recursive Equilibrium: agents face an equilibrium with individual prices, i.e., no need to know distribution.
- \blacktriangleright Linearization: assume the economy is close enough to steady-state that transition equations (i.e., policy functions) are close to linear within small deviations.
- \triangleright Value function iteration: discretize state space and solve model at "nodes" in state space.

Discrete Mortensen and Pissarides (1994) Model

- iid productivity: draw $\epsilon \sim_{iid} F(\epsilon)$; evolve at rate λ
- \blacktriangleright Wages determined by Nash Bargaining (bargaining power α).
- **D** agg shocks Z, endogenous separations when $\epsilon < \epsilon_d$
- \blacktriangleright Value of unemployment:

$$
U(z) = b + \beta \left[p(\theta) \int_{\underline{\epsilon}}^{\overline{\epsilon}} \left[\max \{ W(x, z'), U(z') \} \right] dF(x) + (1 - p(\theta)) U(z') \right]
$$

 \blacktriangleright Value of employment:

$$
W(\epsilon, z) = w + \beta E[\lambda \alpha \int_{\epsilon}^{\bar{\epsilon}} [max\{S(x, z'), 0\} - S(\epsilon, z')] dF(x) + (1 - \lambda)W(\epsilon, z')]
$$

 \triangleright $S(x, z)$: joint surplus of firm & worker.

Firms

Post vacancy at cost κ **.**

 \blacktriangleright Value of a filled vacancy:

$$
J(\epsilon, z) = e^{z} \epsilon - w + \beta E[\lambda(1 - \alpha) \int_{\epsilon}^{\overline{\epsilon}} \max\{S(x, z'), 0\} dF(x) + (1 - \lambda) J(\epsilon, z')]
$$

 \blacktriangleright Value of unfilled vacancy:

$$
V(z) = -\kappa + \beta E[q(\theta) \int_{\epsilon}^{\bar{\epsilon}} [\max\{J(x, z'), V(z')\}] dF(x) + (1 - q(\theta)) V(z')]
$$

Free entry $(V = 0) \rightarrow$ match rate: $q(\theta) = \frac{\kappa}{\beta E[\int_{\epsilon_d} J(x, z') dF(x)]}$

► Market tightness:
$$
\theta = q^{-1} \left(\frac{\kappa}{\beta E[\int J dF(x)]} \right)
$$

Surplus and Employment Thresholds

$$
\blacktriangleright \text{ Impose matching func: } p(\theta) = A\theta^{1-\eta}
$$

$$
\blacktriangleright \text{ Surplus } S(\epsilon, z) = W(\epsilon, z) - U(z) + J(\epsilon, z) - V(z):
$$

$$
S(\epsilon, z) = e^{z} \epsilon - b + \beta \alpha E[\lambda \int_{\epsilon_d}^{\overline{\epsilon}} S(x, z') dF(x) + (1 - \lambda) max\{S(\epsilon, z),
$$

- $A\theta^{1-\eta} \int_{\epsilon_d}^{\overline{\epsilon}} S(x, z') dF(x)]$

$$
z' = \rho z + \epsilon_z, \ \epsilon_z \sim N(0, \sigma_{\epsilon})
$$

 \blacktriangleright How are we going to solve this model?

$$
\blacktriangleright
$$
 Everything function of surplus.

Set up grid of
$$
\epsilon
$$
 and z .

Value Function Iteration

- \blacktriangleright Basic approach to value function iteration:
	- 1. Create grid of points for each dimension in state-space.
	- 2. Specify terminal condition S_t for $t = T$ at each point in state-space.
	- 3. Solve problem of agent in period $T 1$: $S_t(\epsilon, z) = e^z \epsilon - b + \beta E[\text{func}(\epsilon_d)].$
	- 4. $\epsilon_d(z)$ is policy function, which yields the point where $S_t(\epsilon_d, z) = 0$
	- 5. Check to see if function has converged, i.e., $|S_t - S_{t+1}| <$ errtol $\forall (\epsilon, z)$

6. Update $S_{t+1} = S_t$

Interpolation: same idea, but functions used to fill in between grid points.

Grids

- \triangleright Want: smallest grids reasonable.
- \triangleright Grids are both shocks, pick set number of standard deviations.
- **•** Approximate a continuous $AR(1)$ process with a markov process:
- Greate grid of potential z values $\{z_1, ..., z_N\}$, approximate AR(1) process through transition probabilities.

$$
E[z_t] = E[\rho z_{t-1} + \epsilon_{z,t}] = 0 \tag{1}
$$

$$
V[z_t] = V[\rho z_{t-1} + \epsilon_{z,t}] = \rho^2 \sigma_z^2 + \sigma_{\epsilon_z}^2 \qquad (2)
$$

$$
\rightarrow (1 - \rho^2)\sigma_z^2 = \sigma_{\epsilon_z}^2 \tag{3}
$$

 \triangleright Define this process $G(\bar{\epsilon}_z)$

 \blacktriangleright Tauchen (1986):

$$
z_N = m\left(\frac{\sigma_{\epsilon_z}^2}{1-\rho^2}\right) \tag{4}
$$

$$
z_1 = -z_N \tag{5}
$$

 $z_2, ..., z_{N-1}$ equidistant (6)

Expectations with AR(1) Process

 \blacktriangleright Tauchen (1986):

$$
z_N = m\left(\frac{\sigma_{\epsilon_z}^2}{1-\rho^2}\right) \tag{7}
$$

$$
z_1 = -z_N \tag{8}
$$

$$
z_2, ..., z_{N-1} \text{ equidistant} \tag{9}
$$

 \blacktriangleright Create an *nxn* transition matrix Π using probabilities

$$
\pi_{ij} = G(z_j + d/2 - \rho z_i) - G(z_j - d/2 - \rho z_i)
$$
 (10)

$$
\pi_{i1} = G(z_1 + d/2 - \rho z_i)
$$
 (11)

$$
\pi_{iN} = 1 - G(z_N + d/2 - \rho z_i)
$$
 (12)

 \blacktriangleright Idiosyncratic shocks (ϵ_z) :

- \blacktriangleright Right way to do it: Gaussian Hermite Quadrature.
- Here: Same as above, set $\rho = 0$.

Endogenous Separations

 \blacktriangleright Problem:

$$
S(\epsilon, z) = e^{z} \epsilon - b + \beta \alpha E[\lambda \int_{\epsilon_d}^{\overline{\epsilon}} S(x, z') dF(x)
$$

+ $(1 - \lambda) max\{S(\epsilon, z'), 0\} - A\theta^{1-\eta} \int_{\epsilon_d}^{\overline{\epsilon}} S(x, z') dF(x)]$
 $ln(z') = \rho ln(z) + \epsilon_z, \epsilon_z \sim N(0, \sigma_{\epsilon})$

Find $\epsilon_d(z)$ such that $S(\epsilon_d, z) = 0$

 \triangleright $S_0 = ?$ Safest bet to set it to zero at all ϵ , z.

 $\blacktriangleright \theta_0 = ?$ Safest bet to set it to zero at all ϵ, z .

Value Function First Iteration

Intuitively, solve for surplus, find ϵ at which would like to separate for every z.

 \blacktriangleright Calculate the following:

$$
e^z \epsilon_1 - b + \beta \times 0 \tag{13}
$$

$$
e^z \epsilon_2 - b + \beta \times 0 \tag{14}
$$

$$
\cdots \hspace{2.5cm} (15)
$$

$$
e^z \epsilon_N - b + \beta \times 0 \tag{16}
$$

Find ϵ_i st $S(\epsilon_i, z) = 0$.

Repeat for all z .

Value Function First Iteration

- \triangleright Now, check if problem has converged.
- \blacktriangleright What does this mean?
- \blacktriangleright The value in the current state is not changing over time.

$$
\blacktriangleright
$$
 i.e., $S_t(\epsilon, z) \approx S_{t+1}(\epsilon, z)$.

- \blacktriangleright First iteration: it won't be.
- \blacktriangleright What do we do now?
- \blacktriangleright Update the continuation value:

$$
\blacktriangleright S_{t+1} = S_t \text{ for all } \epsilon, z
$$

$$
\blacktriangleright \theta = q^{-1} \big(\tfrac{\kappa}{(1-\alpha)S} \big)
$$

 \triangleright Solve same problem again.

Value Function Second Iteration

- \blacktriangleright Solved for $S(\epsilon, Z)$ in previous iteration.
- ▶ Repeat, solving $S \forall \epsilon$, z

$$
S(\epsilon, z) = e^{z} \epsilon - b + \beta \alpha E[\lambda \int_{\epsilon_d}^{\overline{\epsilon}} S(x, z') dF(x)
$$

$$
+ (1 - \lambda) max\{S(\epsilon, z'), 0\} - A\theta^{1-\eta} \int_{\epsilon_d}^{\overline{\epsilon}} S(x, z') dF(x)]
$$

$$
ln(z') = \rho ln(z) + \epsilon_z, \ \epsilon_z \sim N(0, \sigma_{\epsilon})
$$

I Note that the continuation value is **not** zero!

$$
e^{z}\epsilon_1 - b + \beta \times \text{Cont. Val} \qquad (17)
$$

$$
e^{z}\epsilon_2 - b + \beta \times \text{Cont. Val} \qquad (18)
$$

 \cdots (19)

$$
e^{z} \epsilon_{N} - b + \beta \times \text{Cont. Val} \qquad (20)
$$

Value Function Second Iteration

 \triangleright We check again to see if it has converged.

$$
\blacktriangleright \ \ \text{is} \ \mathsf{S}_t(\epsilon,z) \approx \mathsf{S}_{t+1}(\epsilon,z).
$$

- \triangleright What do we do now?
- \blacktriangleright Update the continuation value:

$$
\blacktriangleright \ S_{t+1} = S_t \text{ for all } \epsilon, z
$$

$$
\blacktriangleright \theta = q^{-1} \big(\tfrac{\kappa}{(1-\alpha)S} \big)
$$

- \triangleright Solve same problem again.
- \blacktriangleright Keep doing this until the difference is very small.

Great, we're done!

 \blacktriangleright Not so fast: this isn't very accurate.

 \triangleright Very slow if we have large numbers of states & grid points (scales exponentially).

Fundamental Problem

 \triangleright The reason we need to use a computer to solve this problem is that we *don't know* the function $S(\epsilon, z)$.

$$
S(\epsilon, z) = e^{z} \epsilon - b + \beta \alpha E[\lambda \int_{\epsilon_d}^{\overline{\epsilon}} S(x, z') dF(x)
$$

+ $(1 - \lambda) max\{S(\epsilon, z'), 0\} - A\theta^{1-\eta} \int_{\epsilon_d}^{\overline{\epsilon}} S(x, z') dF(x)]$
 $ln(z') = \rho ln(z) + \epsilon_z, \ \epsilon_z \sim N(0, \sigma_{\epsilon})$

- \blacktriangleright What is we approximate $S(\epsilon, z)$ with other functions?
- \triangleright Some useful properties we can pick these functions to have:
	- \blacktriangleright Continuous
	- \blacktriangleright Differentiable
- \blacktriangleright If our approximation is accurate enough, we can drop some grid points!

▶ Call interpolated function $\hat{V}(k)$. Then,

$$
S(\epsilon, z) = e^{z} \epsilon - b + \beta \alpha E[\lambda \int_{\epsilon_d}^{\overline{\epsilon}} S(\hat{x}, z') dF(x)
$$

$$
+ (1 - \lambda) max\{ S(\hat{\epsilon}, z'), 0 \} - A\hat{\theta}^{1-\eta} \int_{\epsilon_d}^{\overline{\epsilon}} S(\hat{x}, z') dF(x)]
$$

$$
ln(z') = \rho ln(z) + \epsilon_z, \ \epsilon_z \sim N(0, \sigma_{\epsilon})
$$

 \blacktriangleright Where k' solves

$$
e^{z}\epsilon - b + \text{Conf.}\; \text{Val} = 0 \tag{21}
$$

Updating

 \triangleright We do exactly the same thing as before:

$$
S(\epsilon, z) = e^{z} \epsilon - b + \beta \alpha E[\lambda \int_{\epsilon_d}^{\overline{\epsilon}} S(\hat{x}, z') dF(x) + (1 - \lambda) max\{S(\hat{\epsilon}, z'), 0\} - A\hat{\theta}^{1-\eta} \int_{\epsilon_d}^{\overline{\epsilon}} S(\hat{x}, z') dF(x)]
$$
(22)

 \blacktriangleright For each z. Then, we check the convergence criteria:

$$
|S_t - S_{t+1}| < \text{errtol} \tag{23}
$$

▶ How do we create the function $\hat{S}(\epsilon, z)$?

 \blacktriangleright "Connect the dots" of $S_t(\epsilon, z)$ between all ϵ levels in order for each z.

In principle, interpolate in both dimensions, ϵ and z

In Left is function evaluated at sample points $x_1, ..., x_N$. Right is for (linearly) interpolated function:

- In constructing our function $\hat{S}(\epsilon, z)$, we need to choose an interpolation scheme.
- \triangleright Roughly, what *order* function do we believe will be accurate enough to mimick the value function:

 \blacktriangleright First-order (linear)

- \blacktriangleright Third-order (cubic)
- \blacktriangleright Fifth-order (quintic)
- \triangleright Some other useful interpolation routines:
	- \blacktriangleright PCHIP (piecewise cubic hermite interpolating polynomial): shape-preserving (not "wiggly") continuous 3rd order spline with continuous first derivative.

▶ Choice DOES matter:

Polynomial Interpolation

Suppose we have a function $y = f(x)$ for which we know the values of y at $\{x_1, ..., x_n\}$.

 \blacktriangleright Then, the nth-order polynomial approximation to this function f is given by

$$
f(x) \approx P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \qquad (24)
$$

 \blacktriangleright Then, we have a linear system with *n* coefficients.

We could write this as
$$
y = X\beta
$$
. Look familiar?

Polynomial Interpolation

\blacktriangleright We solve

$$
\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ \vdots \\ y_n \end{bmatrix}
$$

(25)

 \blacktriangleright For $a_0, ..., a_n$

- \triangleright What's the example we are all familiar with? Linear regression: $y = \alpha + X\beta$.
- In practice, this is computationally expensive, but this is the intuition.

Great, we're done!

- \triangleright Not so fast: how do we handle expected values?
- \blacktriangleright Depends on expectation.
- \blacktriangleright Need an accurate way to perform numerical integration.

Surplus function

 \blacktriangleright Problem:

$$
S(\epsilon, z) = e^{z} \epsilon - b + \beta \alpha E[\lambda \int_{\epsilon_d}^{\overline{\epsilon}} S(\hat{x}, z') dF(x)
$$

+ $(1 - \lambda) max\{S(\epsilon, z'), 0\} - A\hat{\theta}^{1-\eta} \int_{\epsilon_d}^{\overline{\epsilon}} S(\hat{x}, z') dF(x)]$
 $ln(z') = \rho ln(z) + \epsilon_z, \epsilon_z \sim N(0, \sigma_{\epsilon})$

Expectations Generally

 \blacktriangleright Expected values also need to be calculated carefully.

 \blacktriangleright Continuation surplus from before:

$$
E[V(\epsilon, z')] \tag{26}
$$

If not an AR(1)/markov process, need to approximate integral.

Generically, pick function f and weights w_i

$$
E[V(\epsilon, z')] = \int_a^b f(x) dx \approx \sum_{i=1}^N w_i f(x_i)
$$
 (27)

$$
\blacktriangleright
$$
 x_i may be known or picked optimally.

 \triangleright We will return to this in the future.

Next Time

\blacktriangleright Empirical regularities project due soon!