Quantitative Macro-Labor: Responding to Outside Offers with Sequential Auctions

Professor Griffy

UAlbany

Fall 2024

Announcements

- ► Today: Allow firms to renegotiate wages rather than contract.
- Research proposal/Introduction due 10/1 (Tuesday after next).
- Outline of expectations:
 - A (fairly) well-posed research question.
 - Online document has lots of info on this.
 - Don't worry too much about having the perfect question.
 - A discussion of your proposed empirical strategy:
 - I estimate the effect of x on y and (hope to) find z.
 - I use xxx data source.
 - A description of the mechanism you think explains this phenomenon.
 - I show using a model that this is (hopefully) explained by xxxx.
 - The key insight is that in the model, something interacts with something else and causes z.

Presentations that week as well.

Contracting Environment in B-M Models

Standard Burdett-Mortensen

- Firms have homogeneous productivity.
- Cannot respond to outside offers.
- Contracts stipulate a permanent wage.
- Distribution of wages posted determined by eqm. wage posting game.
- These contracts are suboptimal:
- Firm would like to retain workers, but artificially restricted:
 - 1. Cannot respond to outside offers.
 - 2. Cannot change wage from first offered wage.

Contracting Environment in B-M Models

Burdett and Coles (2003):

- Firms have homogeneous productivity.
- Cannot respond to outside offers.
- Contracts specify a value to be delivered over time in expectation
- Distribution of determined by eqm. posting game.
- These contracts are optimal given the environment:
 - 1. Firm backloads contracts to reward workers for staying.
 - 2. Solves the "moral hazard problem" of on-the-job search.

Empirical Regularities

- We've primarily discussed the theory the last few weeks, but what are the predictions of these models?
- Burdett and Coles (2003):
 - 1. Wage profiles are upward sloping.
 - 2. Wages increase when moving job-to-job.
 - 3. Job-to-job mobility slows as wages increase.
- What do we observe in the data? (some from Shouyong Shi's notes on directed search)
 - 1. Wages increase with tenure (Farber, 99) \checkmark
 - 2. High wage workers less likely to quit (Farber, 99) \checkmark
 - 3. Dispersion among workers with identical tenure
 - 4. Workers moving *down* the wage ladder.
- Can we use an alternate contracting environment to explain the last two?

Postel-Vinay and Robin (2002)

- Now, a firm *can* respond to outside offers.
- Key ingredients:
 - 1. Firm heterogeneity in terms of productivity.
 - 2. Fixed wage contracts.
- ▶ The contracts are fixed-wage, but can be *renegotiated*.
- Whenever a worker receives an offer, his current employer tries to convince him to stay.
- Current and offering firm have "auction" over worker (hence sequential auctions).
- Higher productivity firm wins.
- (Note: goal of paper is determining contribution of heterogeneity to wage dispersion, hence two-sided heterogeneity.)

Environment

Agents:

- Workers are heterogeneous wrt employment status and ability (fixed).
- Worker ability: $\epsilon \sim H(.)$.
- Worker value functions: $V_0(\epsilon), V_1(\epsilon, w, p)$
- Firms are ex-ante heterogeneous wrt prod., $p \sim F(.), p \in [p, \bar{p}]$
- Preferences and Technology:
 - Production of a type- (ϵ, p) match: ϵp
 - Unspecified utility: $u = U(\epsilon b)$, u = U(w).
 - Workers and firms meet at rate λ₀ (unemployed), λ₁ (employed).
 - Exogenous separations, δ , and birth/death μ
- Symmetric discount rate ρ.

Wage Determination

- "Sequential Auctions" a poaching firm bids on a worker against his incumbent firm.
- ► Wage determination assumptions:
 - 1. Firms can vary their wage offers according to worker characteristics.
 - 2. They can counter offers made by competing firms.
 - 3. All offers are take-it-or-leave-it.
 - 4. Contracts are long-term and can be renegotiated by mutual agreement.
- Take-it-or-leave-it offers are the result of game played between firms.
- This can generate within-firm variation in wages based on luck.
- \blacktriangleright Some workers happen to run into other firms more often \rightarrow higher wages.

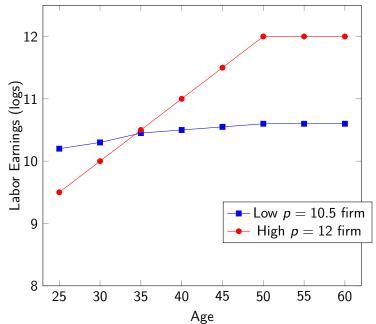
Unemployed Value Function

Unemployed flow value:

$$(\rho + \mu + \lambda_0)V_0(\epsilon) = U(\epsilon b) + \lambda_0 \int_{p_R}^{\overline{p}} V(\epsilon, \phi_0(\epsilon, x), x) dF(x)$$

- What is φ₀(ε, p)? Function mapping φ₀ : R_{ε×p} → R₊ heterogeneity to wages.
- Firms make take-it-or-leave-it offers.
- What is the
 - 1. Wage offered to firms?
 - 2. Reservation "mpl" (they mean p)?
- What does take-it-or-leave-it offers mean about a worker's bargaining power?

Employed Reservation Strategy



Equilibrium Wages

• Worker with state (ϵ, w, p)

- What is the maximum the incumbent firm *p*, could pay? w = εp.
- Worker could run into the following firms characterized by their productivity:
 - 1. Firm $p' \leq \frac{w}{\epsilon}$:

• p' so low that highest wage less than current wage. $\epsilon p' \leq w$

2. Firm p' < p, but $\epsilon p' > w$:

 \triangleright p' firm cannot outbid p firm, but bids wage up.

- 3. Firm p' > p:
 - Incumbent firm cannot match poaching firm. Wage falls to compensate poaching firm for future wage increases.

Equilibrium Wages

- φ: wage that makes worker indifferent given ε and productivities p, p'. Second argument is always p̃ > p̂.
- Define a productivity threshold q such that

$$\phi(\epsilon, q(\epsilon, w, p), p) = w$$

- ▶ q is the lowest productivity firm p ∈ [p, p] from which an offer can impact the wage.
- Corresponding continuation values and probabilities:
 - 1. Firm $p' \leq \frac{w}{\epsilon}$: Probability: $F(q(\epsilon, w, p))$, CV: $V(\epsilon, w, p)$. 2. Firm p' < p, but $\phi(\epsilon, p', p) > w$: F(p) - F(q), $V_{t+1} = V(\epsilon, \phi(\epsilon, p', p), p) = V(\epsilon, \epsilon p', p')$ 3. Firm p' > p: 1 - F(p), $V_{t+1} = V(\epsilon, \phi(\epsilon, p, p'), p') = V(\epsilon, \epsilon p, p)$

Wage Cuts while Moving up Ladder

- As an example, consider two firms with income growth rates γ_1 and γ_2 , $\gamma_2 > \gamma_1$.
- You are currently employed by firm 1 at a wage y₁, and firm 2 is offering you y₂.
- You must work for whoever you pick permanently, and you are maximizing lifetime income with discount rate β.
- Lifetime income:

$$\sum_{t=0}^{\infty} ((1+\gamma_j)\beta)^t y_j$$

Present values:

1. Firm 1:
$$\frac{y_1}{1-\beta(1+\gamma_1)}$$

2. Firm 2: $\frac{y_2}{1-\beta(1+\gamma_2)}$

In this case, what we are saying is that firm 2 would pick y₂ st

$$y_2 = rac{y_1(1 - eta(1 + \gamma_2))}{1 - eta(1 + \gamma_1)}$$

Employed Value Function

Flow value of employment $(q = q(\epsilon, w, p))$:

$$(\rho + \delta + \mu)V_{1}(\epsilon, w, p) = U(w) + \delta V_{0}(\epsilon) + \lambda_{1} \int_{q}^{p} V(\epsilon, \phi(\epsilon, p, x), p)dF(x) (\rho + \delta + \mu)V_{1}(\epsilon, w, p) = U(w) + \delta V_{0}(\epsilon) + \lambda_{1} \int_{q}^{p} [1 - F(x)] \frac{\partial V}{\partial \phi} \frac{\partial \phi}{\partial x} dx$$

• How do we find $\frac{\partial V}{\partial \phi} \frac{\partial \phi}{\partial x}$? From q and p, any competing offer $\rightarrow V(\epsilon, \phi, p) = V(\epsilon, \epsilon x, x).$ $U(\epsilon p) + \delta V_0(\epsilon)$

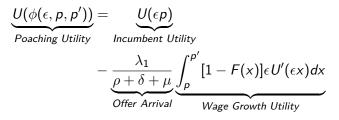
$$\rightarrow V(\epsilon, \epsilon p, p) = \frac{O(\epsilon p) + \delta V_0(\epsilon)}{\rho + \delta + \mu}$$

Reservation Strategies

Employed reservation strategy:

$$V(\epsilon, \phi(\epsilon, p, p'), p') = V(\epsilon, \epsilon p, p)$$
$$V(\epsilon, \phi(\epsilon, p, p'), p') - V(\epsilon, \epsilon p, p) = 0$$
$$\rightarrow V(\epsilon, \phi, p') - \frac{U(\epsilon p) + \delta V_0(\epsilon)}{\rho + \delta + \mu} = 0$$

From earlier:
$$V(\epsilon, \epsilon p, p) = \frac{U(\epsilon p) + \delta V_0(\epsilon)}{\rho + \delta + \mu}$$



Inverting this function yields the reservation strategies.

Identical argument for unemployed workers.

Decomposition

► Conveniently, reservation equation log-linearizes for different utility functions (CRRA, $U(c) = \frac{c^{1-\alpha}-1}{1-\alpha}$):

$$\begin{split} &ln(\phi(\epsilon, p, p')) = ln(\epsilon) + ln(\phi(1, p, p')) \\ &ln(\phi(\epsilon, p, p')) = ln(\epsilon) \\ &+ \frac{1}{1 - \alpha} ln(p^{1 - \alpha} - \frac{\lambda_1(1 - \alpha)}{\rho + \delta + \mu} \int_p^{p'} [1 - F(x)] x^{-\alpha} dx), \alpha \neq 1 \\ &ln(\phi(\epsilon, p, p')) = ln(\epsilon) + ln(p) \\ &- \frac{\lambda_1}{\rho + \delta + \mu} \int_p^{p'} [1 - F(x)] \frac{dx}{x}, \alpha = 1 \end{split}$$

• Here, $ln(\epsilon)$ is the worker effect.

And $ln(\phi(1, p, p'))$ is the labor market history effect.

Steady-State Equilibrium

- They are interested in the cross sectional dispersion of wages, so they focus on the steady-state.
- "The steady state assumption implies that inflows must balance outflows for all stocks of workers defined by a status (unemployed or employed), a personal type e, a wage w, and an employer type p."
- The equilibrium objects are
 - 1. Reservation strategies for each worker over firm productivities, given the distributions and prices.
 - 2. Wage function for for each tuple (ϵ, p, p') with p' = b for unemployed, given the distributions.
 - 3. Flow equations that balance according to the statement above.
- They derive the distributions in the paper.

Log-Wage Variance

- We will define a firm by its productivity "type"
- Recall definition of conditional variance:

V(x) = E[V(x|y)] + V[E(x|y)]

The log-linearity of wages is very useful!

$$In(\phi(\epsilon, q, p)) = In(\epsilon) + In(\phi(1, q, p))$$

$$\rightarrow E[In(\phi(\epsilon, q, p))|p] = E[In(\epsilon)] + E[In(\phi(1, q, p))|p]$$

$$\rightarrow V[In(\phi(\epsilon, q, p))|p] = V[In(\epsilon)] + V[In(\phi(1, q, p))|p]$$

Then the total variance of wages is given by

 $V(ln(w)) = V(ln(\epsilon)) + V(E[ln(w|p)]) + (E[V(ln(w|p))] - V(ln(\epsilon)))$ = $\underbrace{V(ln(\epsilon))}_{Individual} + \underbrace{V(E[ln(\phi(1, q, p))|p])}_{Between \ Firm}$ + $\underbrace{E[V(ln(\phi(1, q, p))|p)]}_{Within \ Firm \ non-individual}$

Empirical Analysis

- They use a matched employer-employee dataset from France.
- They estimate the model, and then use simulated data to decompose the size of the worker effect, the firm effect, and the labor market effect.

Decomposition by Occupation (Postel-Vinay and Robin, 2002)

		Mean log wage:	Total log-wage variance/coeff. var.		Case	Firm effect: VE(lnw p)		Search friction effect: $EV(\ln w p) - V \ln \varepsilon$		Person effect: V ln e	
Occupation	Nobs.	$E(\ln w)$	$V(\ln w)$	CV	U(w) =	Value	% of $V(\ln w)$	Value	% of $V(\ln w)$	Value	% of V(ln w)
Executives, manager, and engineers	555,230	4.81	0.180	0.088	ln w w	0.035 0.035	19.3 19.4	0.082 0.070	45.5 38.7	0.063 0.076	35.2 41.9
Supervisors, administrative and sales	447,974	4.28	0.125	0.083	ln w w	0.034 0.034	27.5 27.9	0.065 0.069	52.1 55.1	0.025 0.022	20.3 17.8
Technical supervisors and technicians	209,078	4.31	0.077	0.064	ln w w	0.025 0.025	32.4 32.8	0.044 0.047	57.6 60.6	0.008 0.005	10.0 6.6
Administrative support	440,045	4.00	0.082	0.072	ln w w	0.029 0.028	35.7 34.6	0.043 0.045	52.2 55.7	$0.010 \\ 0.008$	12.1 9.7
Skilled manual workers	372,430	4.05	0.069	0.065	ln w w	0.029 0.028	42.9 41.5	0.039 0.040	57.1 58.5	0 0	0 0
Sales and service workers	174,704	3.74	0.050	0.060	ln w w	0.020 0.019	40.8 37.1	0.029 0.029	58.7 57.9	0.0002 0.0025	0.4 5.0
Unskilled manual workers	167,580	3.77	0.057	0.063	$\frac{\ln w}{w}$	0.027 0.023	48.3 40.8	0.029 0.033	51.7 59.2	0 0	0 0

LOG WAGE VARIANCE DECOMPOSITION

Job-Stayers Wage Growth (yearly, Postel-Vinay and Robin, 2002)

% obs. such that $\Delta \log wage \leq$ Median Occupation $\Delta \log$ wage (%) -0.10-0.050.05 0.10 Case 0 0 85.8 93.9 96.6 Executives, managers, and engineers $U(w) = \ln w$ 0 0 84.2 U(w) = w0 0 0 93.7 96.8 94.8 97.3 Supervisors, administrative, and sales $U(w) = \ln w$ 0 0 0 84.7 84.5 95.1 97.3 U(w) = w0 0 0 Technical supervisors and technicians $U(w) = \ln w$ 87.2 95.8 97.9 0 0 0 98.1 U(w) = w0 0 0 85.9 96.1 97.3 Administrative support $U(w) = \ln w$ 0 0 0 84.9 94.7 82.9 97.2 U(w) = w0 0 0 94.9 Skilled manual workers 0 85.6 94.5 97.2 $U(w) = \ln w$ 0 0 83.7 U(w) = w0 0 0 94.2 96.8 84.0 97.5 Sales and service workers $U(w) = \ln w$ 0 0 0 94.9 82.8 94.8 97.4 U(w) = w0 0 0 Unskilled manual workers $U(w) = \ln w$ 0 0 84.5 94.2 96.8 0 U(w) = w0 0 0 82.6 94.4 97.3

Dynamic Simulation Yearly Variation in Real Wage when Holding the Same Job over the Year

Job-to-Job Wage Growth (yearly, Postel-Vinay and Robin, 2002)

		Median	% obs. such that $\Delta \log$			log wag	e≤
Occupation	Case	$\Delta \log$ wage (%)	-0.10	-0.05	0	0.05	0.10
Executives, managers, and engineers	$U(w) = \ln w$	3.1	13.0	22.9	38.8	55.1	65.4
	U(w) = w	3.7	7.9	17.3	34.9	54.0	65.1
Supervisors, administrative, and sales	$U(w) = \ln w$	3.3	2.7	12.4	35.0	55.8	66.7
	U(w) = w	2.6	3.3	11.2	34.2	57.9	69.7
Technical supervisors and technicians	$U(w) = \ln w$	2.8	4.2	10.0	32.2	57.8	71.8
	U(w) = w	3.9	2.9	9.0	34.2	54.8	69.3
Administrative support	$U(w) = \ln w$	5.1	1.1	6.1	24.3	49.7	64.4
	U(w) = w	5.3	1.0	5.2	24.0	49.2	63.8
Skilled manual workers	$U(w) = \ln w$	4.5	1.7	7.5	28.2	51.7	66.0
	U(w) = w	4.4	4.3	12.4	30.6	51.7	64.7
Sales and service workers	$U(w) = \ln w$	3.0	0.2	5.5	31.0	59.1	75.3
	U(w) = w	3.4	2.0	8.2	30.7	57.2	75.1
Unskilled manual workers	$U(w) = \ln w$	3.6	0.2	4.4	29.4	55.5	70.0
	U(w) = w	2.7	1.0	7.3	32.4	58.6	70.0

DYNAMIC SIMULATION VARIATION IN REAL WAGE AFTER FIRST RECORDED JOB-TO-JOB MOBILITY

Next Time

- Thursday: Equilibrium search and matching: Mortensen-Pissarides.
- Next Tuesday: presentations of your research proposal/introduction