Quantitative Macro-Labor: Wage Dispersion and Frictional Labor Markets

Professor Griffy

UAlbany

Fall 2024

Announcements

- I posted instructions for the introduction/research proposal on my website.
- There should be code on the cluster to work with different models and different datasets.
- Can everyone
 - 1. access campus cluster?
 - 2. install Stata?

Why are Similar Workers Paid Differently?

- Posed by Dale Mortensen in his book "Wage Dispersion"
- Abowd, Kramarz, and Margolis (1999): "That... observably equivalent individuals earn markedly different compensation and have markedly different employment histories—is one of the enduring features of empirical analyses of labor markets..."
- What are some possible reasons?
 - 1. Ability
 - 2. Selectivity

Residual Wage Dispersion

- We will look to theory to understand *residual wage dispersion*: wage/income dispersion left over after we condition on observables.
- There's a lot:
 - 1. Mortensen (2005): 70% of wage dispersion is unexplained.
- Understanding where this comes from is (one of) the goal of labor economics.

Unconditional Wage Dispersion across Industries

Average hourry carry	gs (in USD) by industry, sex, and firm size (May 1983 CPS)								
Industry and sex		1-24	1000+	Ratio					
	No. of workers	all south	unuquo landi	closes					
Male		4.388	6.436	1.467					
Agriculture	4,667	8.316	13.487	1.622					
Mining	12,369	7.995	13.679	1.711					
Construction	9,380	7.344	11.705	1.59					
Manufacturing	10,300	7.761	13.096	1.68					
Irans./comm.	11,541	6.253	8.438	1.34					
Irade	7,433	8.437	12.588	1.49					
Finance	11,696	7.526	10.020	1.33					
Services	8,677	7.520	10.020						
Nomen		nem si unen	5.013	1.10					
Agriculture	4,696	4.556	and the second	0.9					
lining	9,606	9.917	9.706	1.3					
Construction	6,687	6.344	8.262						
Manufacturing	6,880	6.032	7.714	1.2					
rans./comm.	8,697	5.722	9.787	1.7					
rade	4,858	4.403	5.269	1.1					
inance	6,902	6.193	7.538	1.2					
ervices	6,656	5.955	7.759	1.3					

Unexplained Variation

	N	lale employe	ees	Female employees					
Variable	Mean	β	t-value	Mean	β	t-value			
Firm/plant			as ing PE	indexed access	d school of	and the state			
Size dummies ^b									
F2SP	0.030	0.110	3.96	0.032	0.088	3.06			
F3SP	0.025	0.092	3.04	0.27	0.127	4.06			
F4SP	0.008	0.147	2.76	0.007	0.048	0.83			
F5SP	0.051	0.117	5.17	0.040	0.131	4.96			
F2LP	0.115	0.087	5.32	0.116	0.075	4.41			
F3LP	0.109	0.142	8.38	0.124	0.127	7.50			
F4LP	0.043	0.134	5.53	0.055	0.160	7.00			
F5LP	0.353	0.245	17.90	0.316	0.232	17.00			
Industry									
Agriculture	0.025	-0.351	-11.28	0.005	-0.170	-2.40			
Mining	0.024	0.193	6.31	0.005	0.326	4.69			
Construction	0.084	0.186	9.91	0.012	0.079	1.70			
Trans./comm.	0.094	0.103	6.08	0.055	0.161	6.86			
Trade	0.216	-0.129	-9.53	0.240	-0.190	-12.44			
Finance	0.055	0.031	1.43	0.119	-0.006	-0.35			
Service	0.162	-0.112	-7.49	0.350	-0.026	-1.84			
Statistics									
R ²	0.4064			0.3352					
N	7,833			5,973					

Abowd, Kramarz, and Margolis (1999)

- Famous paper for estimating the size of worker and firm effects on residual wage dispersion.
- Longitudinal panel of matched employer-employee observations in France (insert joke about France here).
- Empirical specification:

 $\begin{aligned} &ln(y_{it}) = \mu_y + \theta_i + \psi_{j,t} + (x_{it} - \mu_x)\beta + \epsilon_{it} & (1) \\ & y_{it} : income & (2) \\ & \mu_y : average income in year t & (3) \\ & \theta_i : individual FEs & (4) \\ & \psi_{j,t} : firm FEs & (5) \end{aligned}$

Key findings:

- 1. Individual FEs explain more than Firm FEs.
- 2. Ind. FEs: 90% of inter-industry wage differentials.
- 3. 75% of the firm-size wage differentials.

Abowd, Kramarz, and Margolis (1999)

Ind. FEs (θ) strongly correlated with income (y), Firm FEs (ψ) not as much.

Order-Independent Estimation	Simple Correlation with:										
Variable Description	Mean	Std. Dev.	у	xβ	θ	α	$u\eta$	ψ	φ	sγ	γ
y, Log (Real Annual Compensation, 1980 FF)	4.2575	0.5189	1.0000	0.2614	0.8962	0.8015	0.4011	0.2604	0.1603	0.2729	0.0333
$x\beta$, Predicted Effect of x Variables	0.3523	0.1464	0.2614	1.0000	-0.0445	-0.1243	0.1509	0.0697	0.0824	-0.0279	0.0300
θ, Individual Effect Including Education ^a	3.9052	0.4335	0.8962	-0.0445	1.0000	0.8964	0.4433	0.2965	0.1717	0.3384	0.0387
α, Individual Effect (Unobserved Factors) ^a	0.0000	0.3955	0.8015	-0.1243	0.8964	1.0000	0.0000	0.2640	0.1465	0.3178	0.0372
$u\eta$, Individual Effect of Education	3.9052	0.1776	0.4011	0.1509	0.4433	0.0000	1.0000	0.1349	0.0910	0.1209	0.0122
ψ , Firm Effect (Intercept and Slope)	0.0000	0.4839	0.2604	0.0697	0.2965	0.2640	0.1349	1.0000	0.9259	0.2537	0.0860
ϕ , Firm Effect Intercept	-0.0968	0.4721	0.1603	0.0824	0.1717	0.1465	0.0910	0.9259	1.0000	-0.1305	-0.0718
sγ, Firm Effect of Seniority	0.0968	0.1844	0.2729	-0.0279	0.3384	0.3178	0.1209	0.2537	-0.1305	1.0000	0.4094
γ, Firm Effect Slope	0.0157	0.0513	0.0333	0.0300	0.0387	0.0372	0.0122	0.0860	-0.0718	0.4094	1.0000

Abowd, Kramarz, and Margolis (1999)

- These are estimates of the size of firm and worker effects.
- But they are still *reduced-form*.
- We haven't identified the underlying causes of the size of each.
- What are some possible heterogeneities among workers?
- What are some possible heterogeneities among firms and industries?

Other Interesting Regularities

Davis and Haltiwanger (1991, 1996) on the level and growth in wage-size effects and wage dispersion between plants:

- 1. Plants with > 5,000 employees: \$3.14/hour more than plants with 25-49 in 1967.
- 2. Between 1967 and 1986, real wage grew by \$1.00, but differential grew to \$6.31.
- 3. Explains 40% of the between-plant wage dispersion.
- 4. between-plant accounts for 59% of the total variance; within-plant accounts for 2%.
- 5. Mean wage grows as plant size grows; wage dispersion falls!
- So is there wage dispersion in the economy?
- ► Why?

Perfectly Competitive Labor Markets

- We typically think of markets as being perfectly competitive/walrasian, etc.
- Prices are determined by the point where supply = demand, and there is no excess.
- Implications for labor market:
 - 1. Workers are paid $w = F_L(K, L)$, i.e., their marginal product.
 - 2. Zero profits in equilibrium.
- Wage dispersion can exist:
 - 1. Dispersion directly proportional to dispersion in productivity/ability/human capital, etc.

Frictional Labor Market

- But perfect competition is an approximation, both for analytical and computational simplicity.
- Things we observe:
 - 1. Price dispersion among identical workers/goods.
 - 2. Failure of markets to clear: unemployment.
 - 3. Profits.
- Market imperfections (frictions): agents are profit maximizing, but lack of information and randomness prevent markets from perfectly clearing.

► $w \neq F_L(K, L)$.

 Here: explore job search as explanation for (some) wage dispersion.

Outline: Frictional Labor Markets

- We'll explore the following:
 - 1. Partial equilibrium job search models: there is some wage distribution and workers optimize by specifying a reservation threshold.
 - 2. Extending the partial equilibrium model: on-the-job search, wage-tenure contracts, risk-aversion.
 - 3. General equilibrium job search: introduce an entry decision on the firm's side and endogenize the matching rate.
 - 4. Efficiency and Directed search.
- ► Failings of the search framework:
 - 1. Shimer (2005): can't account for business cycle regularities.
 - 2. Hornstein, Krusell, Violante (2011): can't account for wage dispersion.

A Model of Sequential Search

- The first model we'll look at is called the "McCall Model" (McCall, 1970).
- Basic idea:
 - 1. Workers can be in one of two states: employed or unemployed, with value functions V, U.
 - 2. Receive job offers at exogenous rate α , no information about meeting prior.
 - 3. Once employed, workers remain at current job until unexogenously separated (no OTJS) at rate δ .
 - 4. Exogenous distribution of wages, $w \in [\underline{w}, \overline{w}], w \sim F(.)$.
 - 5. Linear utility: u(c) = b or u(c) = w.
- Optimal policy is a "reservation strategy," i.e., a lower bound on the wages a worker will accept out of unemployment.
- Why is $w_R > \underline{w}$?
- What is the source of wage dispersion?

Discrete Time Formulation

Each agent wants to maximize his discounted present value of consumption:

$$\max \sum_{t=0}^{\infty} \beta^t c_t \tag{6}$$

(7)

• Some simplifying assumptions: $\alpha = 1, \delta = 0$.

Unemployed Bellman:

$$U = b + \beta E[\max\{V, U\}]$$
(8)

$$U = b + \beta \int_{\underline{w}}^{\overline{w}} \max\{V, U\} dF(w)$$
(9)

Employed Bellman:

$$V(w) = w + \beta V(w) \tag{10}$$

$$V(w) = \frac{w}{1-\beta} \tag{11}$$

The reservation strategy is the lowest wage a worker will accept to leave unemployment.

• i.e.,
$$V(w_R) = U$$
.

Unemployed Bellman:

$$\rightarrow V(w_R) = U = \frac{w_R}{1 - \beta} \tag{12}$$

$$\rightarrow \frac{w_R}{1-\beta} = b + \beta \int_{\underline{w}}^{\overline{w}} \max\{V, U\} dF(w)$$
(13)

$$\rightarrow \frac{w_R}{1-\beta} = b + \beta \int_{\underline{w}}^{w} \max\{\frac{w}{1-\beta}, \frac{w_R}{1-\beta}\} dF(w) \quad (14)$$

$$\rightarrow (1-\beta)w_{R} = (1-\beta)b + \beta \int_{\underline{w}}^{\infty} \max\{w - w_{R}, 0\}dF(w)$$
(15)

$$\rightarrow w_{R} = b + \frac{\beta}{1-\beta} \int_{\underline{w}}^{\overline{w}} \max\{w - w_{R}, 0\} dF(w)$$
(16)

Reservation strategy:

$$w_R = b + \frac{\beta}{1-\beta} \int_{\underline{w}}^{\overline{w}} \max\{w - w_R, 0\} dF(w) \qquad (17)$$

Integrate by parts:

$$\int u dv = uv - \int v du.$$

$$\int_{w_R}^{\overline{w}} (w - w_R) dF(w) \implies u = w - w_R \quad v = F(w) \\ du = dw \qquad dv = dF(w)$$

$$\int_{w_R}^{\overline{w}} (w - w_R) dF(w) = (w - w_R)F(w) \Big|_{w_R}^{\overline{w}} - \int_{w_R}^{\overline{w}} F(w) dw$$

$$=\int_{w_R}^w [1-F(w)]dw$$

Reservation strategy:

$$w_R = b + \frac{\beta}{1-\beta} \int_{w_R}^{\overline{w}} [1-F(w)] dw \qquad (18)$$

- Assume a functional form for the distribution.
- Use root-finding algorithm to find w_R st:

$$w_R - b + \frac{\beta}{1 - \beta} \int_{w_R}^{\overline{w}} [1 - F(w)] dw = 0 \qquad (19)$$

Sounds like a good homework assignment!

Discrete Time Formulation

- Search models typically written in continuous time.
- Easier to work with analytically.
- Discrete time Bellman equation for Unemployment:

$$(1 + rdt)U = bdt + \alpha dtE[\max\{V, U\}] + (1 - \alpha dt)U \quad (20)$$
$$(r + \alpha)dtU = bdt + \alpha dtE[\max\{V, U\}] \quad (21)$$
$$U = \frac{bdt + \alpha dtE[\max V, U]}{(r + \alpha)dt} \quad (22)$$

Taking limit as $dt \rightarrow 0$:

$$\frac{\partial Num.}{\partial dt} = b + \alpha E[\max\{V, U\}]$$
(23)

$$\frac{\partial Denom.}{\partial dt} = (r + \alpha) \tag{24}$$

$$\Rightarrow U = \frac{b + \alpha E[\max\{V, U\}]}{r + \alpha}$$
(25)

Existence and Uniqueness

For simplicity, assume $V = \frac{w}{r}$, i.e. $\delta = 0$. Then,

$$U = \frac{b}{r+\alpha} + \frac{\alpha}{r+\alpha} E[\max\{\frac{w}{r}, U\}]$$
(26)

• U = T(U) is a contraction:

- 1. Discounting: $\left(\frac{\alpha}{r+\alpha} < 1\right)$.
- 2. Monotonicity: T(U) is nondecreasing in U.
- By Blackwell's Sufficient Conditions, this is a contraction with a unique fixed-point.

Continuous Time Formulation

Generally, we will use the continuous time Bellman in its "asset value" formulation:

$$U = \frac{b + \alpha E[\max\{V, U\}]}{r + \alpha}$$
(27)

$$(r+\alpha)U = b + \alpha E[\max\{V, U\}]$$
(28)

$$rU = b + \alpha E[\max\{V - U, 0\}]$$
(29)

$$rU = b + \alpha \int_{\underline{w}}^{\overline{w}} \max\{V - U, 0\} dF(w) \qquad (30)$$

Employment:

$$rV(w) = w - \delta(V(w) - U)$$
(31)

• Jobs lost at rate δ .

• Reservation wage:
$$V(w_R) = U$$
:

$$rV(w_R) = w_R - \delta(V(w_R) - U)$$
(32)

$$V(w_R) = U = \frac{w_R}{r} \tag{33}$$

$$\Rightarrow w_R = b + \alpha \int_{\underline{w}}^{\overline{w}} \max\{V - U, 0\} dF(w)$$
(34)

$$= b + \alpha \int_{\underline{w}}^{\overline{w}} \max\{\frac{w + \delta U}{r + \delta} - \frac{w_R}{r}, 0\} dF(w)$$
 (35)

$$= b + \alpha \int_{\underline{w}}^{\overline{w}} \max\{\frac{w + \delta \frac{w_R}{r}}{r + \delta} - \frac{w_R}{r}, 0\} dF(w) \quad (36)$$

$$= b + \frac{\alpha}{r+\delta} \int_{\underline{w}}^{\overline{w}} \max\{w - w_R, 0\} dF(w)$$
(37)

▶ Note: if $\delta = 0$, identical to discrete time formulation.

Truncating and integrating by parts:

$$w_R = b + \frac{\alpha}{r+\delta} \int_{\underline{w}}^{\overline{w}} \max\{w - w_R, 0\} dF(w)$$
(38)

$$w_R = b + \frac{\alpha}{r+\delta} \int_{w_R}^w (w - w_R) dF(w)$$
(39)

$$\int_{w_R}^{\bar{w}} (w - w_R) dF(w) = (w - w_R) F(w) |_{w_R}^{\bar{w}} - \int_{w_R}^{\bar{w}} F(w) dw$$
(40)

$$= (\bar{w} - w_R)F(\bar{w}) - (w_R - w_R)F(w_R)$$
(41)

$$-\int_{w_R}^{\bar{w}}F(w)dw \tag{42}$$

$$\rightarrow w_R = b + \frac{\alpha}{r+\delta} \int_{w_R}^{\bar{w}} [1 - F(w)] dw$$
 (43)

Hazard Rate

- What is the hazard rate of unemployment?
- Rate of leaving unemployment at time t.

$$H_{u}(t) = \alpha \int_{w_{R}}^{\bar{W}} dF(w)$$
(44)

$$= \alpha(F(\bar{w}) - F(w_R)) \tag{45}$$

$$= \underbrace{\alpha}_{MeetingRate} \underbrace{(1 - F(w_R))}_{Selectivity}$$
(46)

- Note, almost every search model generates a hazard composed of the product of a meeting probability and worker selectivity.
- This is important to remember.
- Hazard rate of employment (leaving employment for unemployment)?

$$H_e(t) = \delta \tag{47}$$

Because separations are independent of state.

Dynamics of Unemployment

- Use hazard rates to understand dynamics and steady-state.
- What does the model predict about employment and unemployment?

$$\dot{u} = \delta(1-u) - \alpha(1-F(w_R))u \tag{48}$$

$$\dot{e} = \alpha (1 - F(w_R))(1 - e) - \delta e \tag{49}$$

• Steady-state: $\dot{u} = 0$, $\dot{e} = 0$:

$$0 = \delta(1 - u) - \alpha(1 - F(w_R))u$$
 (50)

$$\rightarrow u = \frac{\delta}{\delta + \alpha (1 - F(w_R))}$$
(51)

$$0 = \alpha (1 - F(w_R))(1 - e) - \delta e$$
(52)

$$\rightarrow e = \frac{\alpha(1 - F(w_R))}{\alpha(1 - F(w_R)) + \delta}$$
(53)

Wage Dispersion

- What is wage dispersion in this model?
- ▶ Not *exactly* wage distribution.
- Workers reject some of the jobs posted.
- We will go through this next time.

Next Time

- Most likely DMP model.
- Between now and then:
 - 1. Access the campus storage/cluster.
 - 2. Run some example code.
 - 3. Start working on your empirical regularities project.