Quantitative Macro-Labor: Endogenous Separations

Professor Griffy

Fall 2024

Announcements

▶ Briefly review Mortensen and Pissarides.

▶ Show extension incorporating endogenous separations.

Everyone should have started the "empirical regularities" project.

Part-Time Employment and Labor Market Volatility

Pedro Gomis-Porqueras ¹ Ben Griffy ² Stan Rabinovich ³

¹Deakin University

²University at Albany, SUNY

 3 University of North Carolina - Chapel Hill

A long time ago

Overview

- Here, we extend the Mortensen-Pissarides model to include heterogeneous match productivity.
- ► There will be an "endogenous separation" threshold and an "endogenous promotion" threshold.
- ▶ We generate the separate threshold through different costs.
- Ultimate goal of project is to show that acylical cost generates more procyclical employment and countercyclical unemployment.
- ▶ But here focus is on showing use of surplus and ex-post match heterogeneity to generate cool model features.

Paper Outline

- Start with "empirical regularities"
 - What we will explore;
 - Motivate our model construction.
- Show existence of part-time jobs in steady-state model.
- Characterize productivity thresholds.
- Use discrete time version to simulate out of steady-state.
- ► (I will present this like a seminar to show a template for talk.)
- Bullet points vs. sentences:
 - Sentence: contains a subject, verb, and a complete idea.
 - Bullet point in talk: fits on one line.
- ► The current version of the paper is much less theory, much more quantitative. This is more elegant.

Part and Full-Time Employment

- Part-time employment large component of labor market:
 - ▶ Part-time employment rate: 22% (Prime age, 17%)
 - ▶ Ages 18-24: 35%, up from 25% a decade ago.
 - ► Ages 55-64: 47%
 - ▶ Production: 40 hours/week for full-time, 28 hours/week for part-time
- Search models rarely feature part-time employment.

Cyclicality

▶ Different cyclicality of part and full-time jobs.

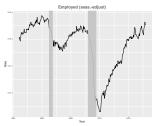


Figure: Employment

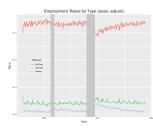


Figure: Unemployment

► Would PT improve fit?

Cyclicality of Flows

Different cyclicality of part and full-time jobs.

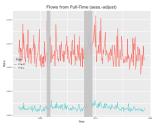


Figure: Employment

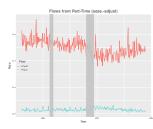


Figure: Unemployment

► Would PT improve fit?

Question

- How much of part and full-time employment is driven by
 - aggregate shocks?

- match quality composition.
- What are the consequences of ignoring part-time employment?

- Policy analysis
 - ► UI vs. job-keeper
- ► Today: first part.

What We Do

- Develop a search and matching model of the labor market with
 - endogenous part and full-time employment.
 - endogenous transitions (PT/FT and to unemployment).
- ► Mortensen-Pissarides (1994) with
 - procyclical productivity that is higher for full-time jobs;
 - acyclical costs that are asymmetric between part and full-time jobs;
 - aggregate shocks.

Preview of Findings

- How much of part and full-time employment is driven by
 - aggregate shocks?
 - Primarily drives job-finding.
 - match quality composition.
 - Drives almost all fluctuations in part and full-time.
- What are the consequences of ignoring part-time employment?
 - Understates the cost of business cycles & magnitudes.
- Policy analysis
 - ► UI vs. job-keeper
 - Job keeper very effective at limiting size of recession.

Model Environment

- Random search and matching with endogenous separations.
- Continuous time, discount rate *r*.
- Agents:
 - Unemployed and employed workers.
 - Matched and unmatched firms.
- Technology:
 - Random matching in labor markets.
 - Production: $z Y_T \epsilon$ (agg, type, idiosyncratic).
 - ▶ Endogenous transitions: between emp. types & unemp.
- \triangleright For simplicity: assume agg. productivity (z) fixed (for now).

Agents

- Workers:
 - May be unemployed, or employed part or full-time.
 - ▶ Nash bargained wages, i.e., share of current match surplus.
- Firms:
 - Post single-worker vacancies at cost κ .
 - Pay wages and costs depending on part or full-time worker.
 - **Costs:** τ_F and τ_P for part and full-time.
- Jointly decide if match is full-time, part-time, or separate any time a shock occurs.

Search and Matching Technology

- Random matching w/ sep. (Mortensen and Pissarides, 1994):
 - ▶ Matches random: productivity ϵ not known before contact.
 - ▶ Matches separate if ϵ is/falls below threshold (here ϵ_P)
- No OTJS.
- Matching technology:
 - \blacktriangleright # of matches in labor market: M = M(u, v) (CRS).
 - ▶ Labor Market Tightness: $\theta(\cdot) = \frac{v}{u}$
 - Worker finding rate: $q(\theta) = \frac{M(u,v)}{v}$
 - ▶ Job finding rates: $p(\theta) = \frac{M(u,v)}{u} = \theta q(\theta)$

Workers

- ▶ Either part-time or full-time ($T = \{P, F\}$).
- ▶ iid productivity: draw $\epsilon \sim_{iid} F(\epsilon)$; evolve at rate λ_T
- ightharpoonup Wages determined by Nash Bargaining (bargaining power α).
- Value of unemployment:

$$r\ U = b + p(\theta) \int_{\epsilon}^{\bar{\epsilon}} [\max\{\max\{W^F(x), W^P(x)\}, 0\} - U] dF(x).$$

Value of employment:

$$r W^{T}(\epsilon) = w + \lambda_{T} \alpha \int_{\epsilon}^{\overline{\epsilon}} \left[\max \left\{ \sum_{i=1}^{T} \left[\max \left\{ \sum_{i=1}^{T} \left[\sum_{i=1}^{T} \left$$

 \triangleright $S^T(x)$: joint surplus of firm & worker.

Firms

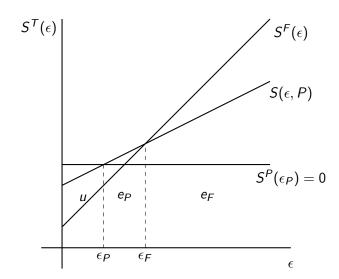
- **Post vacancy at cost** κ .
- ▶ Pay flow cost τ_T by type once employed.
- Value of a filled vacancy:

$$r J^{T}(\epsilon) = zY_{T}\epsilon - \tau_{T} - w$$
$$+ \lambda_{T}(1 - \alpha) \int_{\underline{\epsilon}}^{\bar{\epsilon}} [\max\{S^{F}(x), S^{P}(x)\}, 0\} - S^{T}(\epsilon)] dF(x)$$

Value of unfilled vacancy:

$$r\ V = -\kappa + q(\theta) \int_{\epsilon}^{\bar{\epsilon}} [\max\{\max\{J^F(x), J^P(x)\}, 0\} - V] dF(x)$$

- ► Free entry (V=0) → match rate: $q(\theta) = \frac{\kappa}{\int_{\epsilon_D} J(x,H) dF(x)}$
- Market tightness: $\theta = q^{-1}(\frac{\kappa}{\int JdF(\kappa)})$


Surplus and Employment Thresholds

- ► Surplus $S^T(\epsilon) = W^T(\epsilon) U + J^T(\epsilon) V$
- ▶ Surplus of match for either $T = \{P, F\}$:

$$(r + \lambda_T) S^T(\epsilon) = z\epsilon Y_T - \tau_T - b - \frac{\alpha}{1 - \alpha} \theta \kappa + \lambda_T \left[\int_{\epsilon_F}^{\bar{\epsilon}} S^F(x) dF(x) + \int_{\epsilon_P}^{\epsilon_F} S^P(x) dF(x) \right]$$

- **Existence:** assume \exists some ϵ_F and ϵ_P st
 - 1. $zY_F\epsilon_F \tau_F > zY_P\epsilon_F \tau_P$ and
 - 2. $zY_P\epsilon_P \tau_P > 0$:

Employment Thresholds

Policy Functions

- ▶ Super messy for different λ_T . Show for $\lambda_T = \lambda$.
- The part-time treshold is given by the indifference equality: $S^P(\epsilon_P) = 0$:

$$\epsilon_{P} = \frac{\tau_{P} + b + \frac{\alpha}{1 - \alpha} \theta(z) \kappa}{z Y_{P}} - \frac{\frac{\lambda z Y_{F}}{r + \lambda} \left(\int_{\epsilon_{F}}^{\bar{\epsilon}} [1 - F(x)] dx + \frac{Y_{P}}{Y_{F}} \int_{\epsilon_{P}}^{\epsilon_{F}} [1 - F(x)] dx \right)}{z Y_{P}}$$

And the full-time threshold is given by the indifference condition $S^F(\epsilon_F) = S^P(\epsilon_F)$

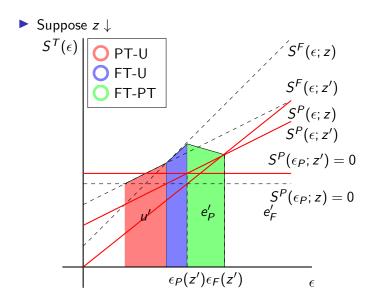
$$\epsilon_F = \frac{\tau_F - \tau_P}{z(Y_F - Y_P)}.$$

• $W^* = \alpha S$ and $\theta^* = q^{-1}(\frac{\kappa}{(1-\alpha)S})$ determined by SS surplus.

Steady-State Employment

- ► Flows:
 - 1. $u \rightarrow PT$, $u \rightarrow FT$;
 - 2. $PT \rightarrow FT$, $PT \rightarrow u$;
 - 3. $FT \rightarrow PT$, $FT \rightarrow u$.
- Must all be equal to 0 in equilibrium.
- Steady-state employment:

$$e^{P} = \frac{(P(\theta)u + \lambda_{F}e^{F}) [F(\epsilon_{F}) - F(\epsilon_{P})]}{(\lambda_{P}[1 - F(\epsilon_{F}) + F(\epsilon_{P})])};$$


$$e^{F} = \frac{(P(\theta)u + \lambda_{P}e^{P}) [1 - F(\epsilon_{F})]}{(\lambda_{F}F(\epsilon_{F}))};$$

$$u = \frac{\lambda_{P}F(\epsilon_{P})e^{P} + \lambda_{F}F(\epsilon_{P})e^{F}}{p(\theta)[1 - F(\epsilon_{P})]}.$$

Steady-State Equilibrium

- Equilibrium is defined by the functions $(\theta^*, w^*, \epsilon_F, \epsilon_P)$, corresponding value functions, the steady-state tuple: (e_P, e_F, u) such that
 - 1. θ is defined by the free entry condition, V=0, given other equilibrium objects, $\theta^*=q^{-1}(\frac{\kappa}{(1-\alpha)S})$.
 - 2. ϵ_P defines the point at which $S^P(\epsilon_P) = 0$.
 - 3. ϵ_F defines the point at which $S^F(\epsilon_F) = S^P(\epsilon_F)$
 - 4. Wages are given by a surplus sharing rule, $w^T(\epsilon) = \alpha S^T(\epsilon)$

Employment Threshold Dynamics

Calibration

- Discretize model at weekly frequency.
- Preset parameters to ubiquitous values in literature.
- Estimate parameters related to novel features of the model.
- Target:
 - Steady state employment rates;
 - Steady state employment flows.
- ▶ Simulate model 1000 times, with length of 320 quarters each.
- Average over 1000 simulations, toss first 200 quarters.

Outline for Findings

Describe how model fits data.

▶ Decompose into match quality and aggregate shocks.

Employment Rates

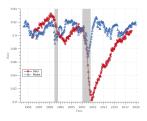


Figure: Full-Time

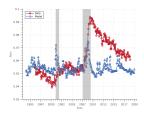


Figure: Part-Time

Employment Flows

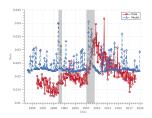


Figure: Full-time to part-time

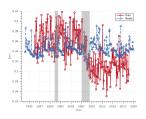


Figure: Part-time to full-time

Findings

- Decompose into contribution of match quality and aggregate shocks:
 - Fix share of part and full-time to steady-state values.

• Set
$$\delta_t = \frac{e_t \to u_{t+1}}{e_t}$$
, and $p(\theta_t) = \frac{u_t \to e_{t+1}}{u_t}$

► Fluctuations in pt and ft driven by aggregate shocks. ie within variation.

Employment

- Part-time employment too volatile.
- ▶ Employers hoard part-time workers instead of firing them.

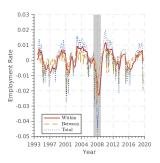


Figure: Full-Time

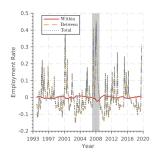


Figure: Part-Time

Wages and output

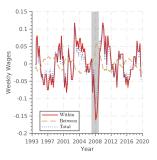


Figure: Wages.

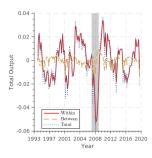


Figure: Aggregate output.

Paper Findings Summary

- Extend Mortensen and Pissarides (1994) to include
 - two types of employment (part and full-time)
 - different acyclical costs by employment type.
- Run calibrated example.
- Findings:
 - Match quality explains fluctuations in part and full-time employment.
 - Job-keeper scheme more effective than UI.

Next Time

Next Tuesday: presentations (at random). Research proposals due.

► Market Power (please review Hosios Condition slides online)

Preset-Parameters

► AR(1) aggregate shocks & log-normal iid productivity:

$$z_{t+1} = \rho z_t + \nu_z \tag{1}$$

$$\nu_z \sim LN(0, \sigma_Z)$$
 (2)

$$\epsilon \sim Ln(0, \sigma_{\epsilon})$$
 (3)

- Cobb-Douglas Matching: $M(u, v) = Au^{\eta}v^{1-\eta}$.
- Preset parameters estimated in related papers.

Parameter	Value	Source
Ь	0.4	UI Percent of Output (Shimer, 2005)
η	0.7	Matching function elasticity (Shimer, 2005)
α	0.7	Hosios Condition
Α	0.113	Matching efficiency (Shimer, 2005)
σ_ϵ	0.16	Variance of match productivity shock (Fujita and Ramey, 2012)
ρ	0.9895	Persistence of aggregate shocks (Fujita and Ramey, 2012)
σ_z	0.004	Variance of aggregate shocks (Fujita and Ramey, 2012)

d back

Fit

► Matches moments well.

Table: Fit

Moment	Data	Model
Wage Ratio (Full-Time to Part-Time)	1.150	1.166
Full-Time Employment Rate	0.769	0.767
Part-Time Employment Rate	0.180	0.167
Unemployment Rate	0.051	0.067
Separation Rate	0.014	0.014

Estimated Parameters

Parameter	Value	Source
$ au_P$	0.18	Acyclical cost for part-time workers
$ au_{ extsf{ extsf{F}}}$	0.79	Acyclical cost for full-time workers
Y_P	1.89	Part-time productivity
Y_F	2.60	Full-time productivity

- $ightharpoonup Y_F/Y_P \approx 1.38.$
- FT vs. PT hours (data): 40 hrs. vs. 28 hrs (\approx 1.43).
- ightharpoonup $au_F/ au_P pprox $3.18/hour.$
- ▶ FT vs. PT costs (data): 9.75/hr. vs. 3.2/hr. ($\approx $3.05/hour$).

♦ back